Cytotoxic Activities of Xanthones Isolated from Calophyllum depressinervosum and Calophyllum buxifolium Against SNU-1 and LS174T Cell Lines.

Gwendoline Cheng Lian Ee


Abstract: A series of xanthones isolated from Calophyllum depressinervosum and Calophyllum buxifolium were studied for their cytotoxicities. Ananixanthone (1), caloxanthone B (2), caloxanthone I (3), caloxanthone J (4),  xanthochymone B (5), thwaitesixanthone (6), 1,3,5,6-tetrahydroxyxanthone (7) and  dombakinaxanthone (8) were successfully isolated from both Calophyllum species. These eight compounds and a synthetically derived compound, thwaitesixanthone monoacetate (9) were tested for cytotoxicity activities against stomach cancer, SNU-1 and LS-174T cell lines. Caloxanthone B (2) gave the highest cytotoxic activity against SNU-1 with an IC50 valueof 1.47μg/ml.  Meanwhile, xanthochymone B (5) shows the highest cytotoxic activity against LS-174T cell with an IC50 valueof 0.45μg/ml. The structure-activity relationship (SAR) studies predicted that the presence and arrangements of furano, pyrano and prenyl substituents in the xanthone skeleton are important towards the cytotoxic activity. A molecular docking simulation was performed to model the probable binding models of compound 2 into the HER-2 (PDB ID: 3PP0) and compound 5 into β-catenin (PDB ID: 1JDH).


Calophyllum depressinervosum, Calophyllum buxifolium, xanthones, SNU-1, LS174T, SAR and Molecular docking.

Full Text:



Cechinel, F., V., Megre, S., C., & Niero, R. (2009). Chemical and pharmacological aspects of the genus Calophyllum, Chem. Biodiversity. 6: 313-327.

Coner, E. J. H. (1952). Wayside trees of malaya vol 2. singapore: singapore: goverment printing office

Go´mez-Verjan, J., Gonzalez-Sanchez, I., Estrella-Parra, E., and Reyes-Chilpa, R., (2015). Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context. Scientometrics. 105: 1019–1030.

Ee, G. C. L., Mah, S. H., Rahmani, m., Taufiq-Yap, Y. H., Teh, S. S., amd Lim, Y. M., (2011). A new furanoxanthone from the stem bark of Calophyllum inophyllum, J Asian Nat. Pro.Res. 13: 956–960.

World helth organization, Cancer, Fact sheet., 2017 (accessed 20 Mei 2017)

Brand, K., Baker, A. H., Perez-canto, A., Porsling, A., Sacharjat, M., Geneeb M., and Arnold, W., (2000). Treatment of colorectal liver metastases by Adenoviral transfer tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res. 60: 5723–5730.

Teng, L., and Lu, J., c-MET as a potential therapeutic target in gastric cancer (Review) (2013). Int J Mol Med., 32: 1247-1254.

Mark, A. H., Tharun, L., Muth, J., Dancau, A. M., Simon, R., Yekebas, E., Kaiffi, J. T., Lacher, M. M., Brummendorf, T. H., Bokemeyer, C., Izbizki J. R., and Suuter, G., (2009). HER-2 amplication is highly homogeneous in gastric cancer, Hum Pathol. 40: 769-777.

Fatima, S., Lee, N. P. and Luk, J. M., (2011). Dickkopfs and Wnt/β-catenin signalling in liver cancer. World J Clin Oncol, 2: 311-325.

Halgren, T. A., (1999), MMFF VI. MMFF94s Option for Energy Minimization Studies. J Comput. Chem., 20: 720-729.

Hanwell, M. D., Curtis D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem., 4: 17

Sanner, M.F., (1999), Python: a programming language for software integration and development. J Mol Graph Model, 17: 57-61.

Trott, O., and Olson A.J., (2010), AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 31: 455-461.

Liu, J., Wang, H., Zuo, Y., and Farmer, S. R., (2006), Functional Interaction between peroxisome proliferation-activated receptor γ and β-catenin. Mol Cell Biol, 1: 5827-5837.

Laskowski, R. A., and Swindells, M. B., (2011). LigPlot+ : Multiple Ligand-Protein Interaction Digram for Drug Discovery. J Chem. Inf. Model, 51: 2778-2786.

Gately, D.P., and Howell, S.B., (1993), Cellular accumulation of the anticancer agent cisplatin: A review, Br. J. Cancer, 67: 1171-1176.

Yoo, B. C., Ku, J-L., Hong, S.-H., Shinj, Y.-K., Park, S. Y., Kim, H. K., and Park, J.-G., (2003), Decreased pyruvate kinase M2 activity linked to CISPLATIN resistance in human gastric carcinoma cell lines. Int. J. Cancer, 108: 532-539.

Otto, A. M., Brischwein, M., Motrescu, E., and Wolf B., (2004), Analysis of drug action on tumor cell metabolism using electronic sensor chips. Arch. Pharm. Pharm. Med. Chem., 337: 682-686.

Graham, T. A., Ferkey, D. M., Mao, F., Kimelman D., and Xu, W., (2001), Tcf4 can specifically recognize β-catenin using alternative conformations. Nat. Struct. Mol. Biol., 8: 12.

Mosmann, T., (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65: 55-63.

Joaquim, C. B., Arruda, M. S. P., and Neto, M. S., (1998), A preylated xanthone from the bark of Symphonia globulifera, Phytochemistry, 49: 1159-1160.

Iinuma, M., Tosa, H., Tanaka, T., and Yonemori, S. (1994), Two xanthones from root bark of Calophyllum inophyllum. Phytochemistry, 35: 527-532.

Dharmaratne, H. R., Sotheeswaran, S., Balasubramaniam S., and Reisch, J., (1986), Xanthones from roots of three calophyllum species. Phytochemistry, 25: 1957-1959.

Dharmaratne, H. R. W., and Wijesinghe, W. M. N. M., (1997), A trioxygenated diprenylated chrromenxanthone from Calophyllum moonii. Phytochemistry, 46: 1293-1295.

Cheng, H. C., Wang, L.-T., Khalil, A. T., Chang, Y. T., Lin Y. C., and Shen, Y. C., (2004). Pyranoxanthones from Calophyllum inophyllum. J Chin Chem Soc, 51:431-435.

Iinuma, M., Ito, T., Tosa, H., Tanaka, T., Miyake, R., and Chelladurai, V., (1997). New linear pyranoxanthones from Calophyllum Apetalum. Heterocycles,. 45: 2

Jiang, D.-J., Hu, G.-Y., Jiang, J.-L., Xiang, H.-L., Deng H.-W., and Li Y.-J., (2003). Relationship between Protective Effect of Xanthone on Endothelial Cells and Endogenous Nitric Oxide Synthase Inhibitors, Bioorganic Med Chem, 11:5171–5177.

Trisuwan, K., Boonyaketgoson, S., Rukachaisirikul V., and Phongpaichit, S., (2014). Oxygenated xanthones and biflavanoids from the twings of Garcinia xanthochymus.

Tetrahedron Lett., 55:3600-3602.

Ikeya Y., Sugama K., Okada M., and Mitsuhashi H., (1991). Two xanthone from Polygala tenuifolia, Phytochemistry, 30: 2061-2065



  • There are currently no refbacks.

Comments on this article

View all comments

Copyright (c) 2018 Pakistan Journal of Pharmaceutical Research

Copyright © 2014 All Rights Reserved  Pakistan Journal of Pharmaceutical Research 
Powered by Department of Pharmacy BZU | Designed By: Muqeet Wahid